Skip to contents

Classifies each day as 'mandatory', 'non-mandatory', or 'none' based on trip or tour purpose. Use for weighting and travel pattern analysis.

Usage

calc_day_trip_class(daypat_table, daypat_table_type, days, value_labels)

Arguments

daypat_table

data.table with required columns:

  • For 'trip': day_id <character/integer>, d_purpose_category

  • For 'linked_trip': day_id <character/integer>, d_purpose_category

  • For 'tour': day_id <character/integer>, tour_purpose Rows: one per trip/tour. Keys: (day_id). Modified by reference: no (returns copy).

daypat_table_type

character(1). Type of day pattern table: 'trip', 'linked_trip', or 'tour'.

days

data.table with required columns:

  • person_id <character/integer> — person ID

  • day_id <character/integer> — day ID Rows: one per day. Keys: (person_id, day_id). Modified by reference: no (returns copy).

value_labels

data.table with required columns:

  • variable — variable name

  • value <character/integer> — coded value

  • label — value label Rows: one per value. Keys: (variable, value). Modified by reference: no (returns copy).

Value

data.table with columns:

  • person_id <character/integer> — person ID

  • day_id <character/integer> — day ID

  • day_trip_class — trip class Rows: one per day. Keys: (person_id, day_id). Modified by reference: no (returns copy).

Details

  • Uses trip, linked_trip, or tour table to determine day pattern class.

  • Maps purpose category to class using value labels.

  • Handles missing or 'other' categories robustly.

  • Returns a copy; does not modify by reference.

Settings

None.

See also

scripts/modeling/calc_day_trip_class.R

Other day pattern modeling: calc_daypat_probabilities(), save_daypat_results()

Examples

## Not run:
# daypat_table <- ... # trip/tour data
# days <- ... # day-level data
# value_labels <- ... # value labels
# result <- calc_day_trip_class(daypat_table, 'trip', days, value_labels)
## End(Not run)