Package index
-
add_geometry_to_table() - Add Geometry to Zone Groups Table
-
adjust_pums_to_reference() - Adjust PUMS weights to match ACS
-
adjust_ref_counts_dataset() - Adjust ACS counts to match county totals
-
adjust_reference_to_target() - Adjust reference counts to match targets
-
adjust_target_to_study_zones() - Adjust targets to client zones
-
adjust_unrelated_per_wts() - Adjust person weights for unrelated persons
-
adjust_unrelated_pums() - Split unrelated householders in PUMS
-
adjust_unrelated_survey() - Adjust survey data to account for unrelated householders
-
aggregate_targets() - Aggregate targets to higher-level geography
-
append_var_lab() - Append value labels to variable
-
archive_file() - Archive file with timestamp if exists
-
blend_initial_weights() - Blend initial weights for ABS and NPS samples
-
build_update_map() - : Build Update Map for Combined Target Categories
-
calc_alpha() - Calculate blending factor for NPS sample
-
calc_complete_hhdays() - Calculate complete household weekdays
-
calc_day_trip_class() - Classify day trip type
-
calc_day_weights() - Calculate day weights for each person-day
-
calc_daypat_probabilities() - Save day pattern summary results
-
calc_initial_weights() - Calculate initial survey weights
-
calc_linked_trip_weights() - Calculate linked trip weights
-
calc_max_error() - Calculate maximum error across weighted variables
-
calc_person_type() - Calculate person type classification
-
calc_person_weights() - Calculate person weights from household weights
-
calc_sample_plan_counts() - Allocate ACS counts to sample plan geographies
-
calc_survey_ci() - Calculate survey confidence intervals by zone group and region
-
calc_target_ci() - Calculate target confidence intervals by zone group and region
-
calc_tour_weights() - Calculate tour weights for each person
-
calc_trip_rate_factor() - Calculate trip rate factor from model
-
calc_trip_weights() - Calculate trip weights for each person-trip
-
calc_uwe() - Calculate unequal weighting effect (UWE)
-
calc_weight_fit() - Calculate fit between target and survey confidence intervals
-
calc_weight_mape() - calc_target_fit
-
calculate_acs_proportions() - Calculate ACS proportions from counts
-
calculate_aggegrate_trip_rates() - Aggregate trip rates by platform and type
-
cap_trip_rate_factors() - Cap trip rate factors
-
check_all_settings() - Validate all YAML configs under a directory
-
check_daypat_results() - Check day pattern model results against original data
-
check_group_sum() - Check group sum consistency for target columns
-
check_group_sums() - Check group sums for target columns
-
check_initial_weights() - Check initial weights against PUMS reference counts
-
check_ref_counts() - Check reference counts against PUMS data
-
check_settings() - Validate a single YAML config against the JSON schema
-
check_settings_doc_coverage() - CI/PR gate: ensure settings are documented in the schema
-
check_weight_skew() - Check skew between household and person weights in PUMS
-
check_write_to_db() - Confirm database write intent
-
clean_data_dict() - Clean PUMS data dictionary
-
clip.vector() - Clip vector to bounds
-
cluster_pumas() - Cluster PUMAs
-
connect_to_pops() - Connect to the POPS server using Rpostgres
-
create_full_xwalk() - Create PUMA-to-zone group crosswalk
-
create_ie_adjustment_data() - Create adjustment factors to match expansion data to target year
-
create_importance_list() - create_importance_list
-
create_target_update_table() - Create target update mapping table for control file
-
cut_and_label() - Cut variable into labeled intervals
-
db_table_exists() - Check if table exists on DB
-
db_table_has_geometry() - Check if database table has geometry column
-
diff_settings_vs_schema() - Compare used settings against documented schema properties
-
discover_settings_in_code() - Discover settings keys used in the codebase
-
entropy_zone_groups() - Group PUMAs by sample rate using entropy-based clustering
-
extract_trip_rate_factors() - Summarize trip rate factors by platform and day group
-
fetch_acs() - Fetch ACS table with caching
-
fetch_all_hts_tables() - Load all HTS tables from POPS or disk
-
fetch_from_db() - Fetch table from database with geometry support
-
fetch_hts_table() - Load HTS table from POPS, cache, or CSV
-
fetch_pums() - Fetch PUMS data with caching
-
fetch_study_region() - Fetch study region geometry from POPS or cache
-
fillna() - Fill NA values in data.table
-
filter_settings() - Exclude loader-generated and deprecated settings from coverage checks
-
find_income_overlaps() - Match income bins by overlap
-
find_level_idx() - Find index for compound range in target string
-
find_ncols() - find_ncols
-
find_project_root() - Locate SharePoint project root directory
-
fix_value_labels_on_load() - Fix value labels on load
-
force_balance_pums_weights() - Peg household weights to person weights
-
format_income_bins() - Format income bin labels
-
geoid_pad() - Pad GEOID columns to fixed width
-
get_acs_bg_counts() - Get ACS block group counts (multi-unit)
-
get_acs_bg_counts_base() - Get ACS reference counts for block groups
-
get_acs_ethnicity() - Fetch ACS ethnicity table for imputation
-
get_acs_race() - Fetch and format ACS race table for imputation
-
get_age_upper_bounds() - Parse upper bounds from age class labels
-
get_bg_geom() - Fetch block group shapefile for study region
-
get_county_fips() - Get county FIPS codes for study region
-
get_day_groups() - Get day group data table
-
get_db_table_name() - Resolve full database table name for HTS
-
get_hh_person_sums() - Aggregate person-level variables to household totals
-
get_income_bounds() - Get income breaks from labels
-
get_income_broad() - Recode household income to broad bins
-
get_income_broad_xwalk() - Create income broad crosswalk
-
get_is_wfh() - Determine work-from-home status
-
get_max_income_bin() - Get maximum income bin
-
get_overlap_allocation() - Compute overlap allocation ratios between polygons
-
get_puma_geom() - Fetch PUMA shapefile for study region
-
get_puma_ids() - Get PUMA IDs for study region
-
get_pumas() - Get PUMA shapefile
-
get_python_path() - Get Python path from settings
-
get_settings() - Load and validate weighting pipeline settings
-
get_state_fips() - Get state FIPS codes for study region
-
get_target_level() - Extract Target Name and Level from Target String
-
get_target_map() - Extract target mapping from settings
-
get_target_methods() - List available target preparation methods
-
get_test_settings() - Initialize test settings for project
-
get_tracts_puma_xwalk() - Get tracts-to-PUMA crosswalk from Census
-
get_user_specs() - Get user specifications for puma groups or clustering method
-
get_xwalk_sfx_to_sfy() - Reallocate data between polygon sets
-
group_from_defined_list() - Prepare PUMA/Client Zone groups from defined list
-
impute_ethnicity() - Impute ethnicity for survey persons using ACS
-
impute_gender() - Impute gender for ambiguous responses
-
impute_income_nonrelatives() - Impute household income for nonrelative households
-
impute_income_pnta() - Impute household income for missing responses
-
impute_race() - Impute race for survey persons
-
integerize() - DEPRECATED. Integerize grouped columns to match totals
-
integerize_probs() - Deprecated Integerize probability columns by sampling#' @description Converts groups of probability columns to binary indicators by sampling, ensuring each row sums to 1. Use for multinomial assignment from probabilities.
-
kmeans_zone_groups() - Run k-means clustering on PUMA centroids and data
-
label_targets() - Label Targets Table
-
load_sf_obj() - Load the SF Object
-
load_xwalk() - Load tract-to-PUMA crosswalk file
-
make_binary() - Convert probability columns to binary indicators (max selection)
-
make_probs_binary() - DEPRECATED. Convert probability columns to binary indicators (sampling)
-
make_schema_patch_snippet() - Generate a JSON snippet to patch missing schema properties
-
parse_code_root() - Resolve code root directory
-
parse_raw_data_root() - Resolve raw data directory
-
parse_settings_path() - Resolve and validate settings file path
-
plot_bias_variance() - Create bias/variance plot, if data has been prepared
-
plot_weight_distribution() - Violin Plot of Household Weight Distribution by Zone Group
-
plot_weight_fit() - Plot survey vs. target fit by group
-
plot_zones_map() - Plot a map of the zone groups
-
popsim_calculate_importance() - Calculate target importance from confidence intervals
-
popsim_make_control_config() - Create control config for PopulationSim
-
popsim_make_geoxwalk() - Create geo crosswalk for PopulationSim
-
popsim_make_input_data() - Create seed and control data for PopulationSim
-
popsim_make_settings() - Write PopulationSim settings.yaml file
-
popsim_make_weights() - Run PopulationSim and generate final weights
-
popsim_search() - Run PopulationSim grid search over expansion factors and bounds
-
popsim_search_stats() - Compute diagnostics for PopulationSim grid search results
-
popsim_settings_defaults() - popsim_settings_defaults
-
popsim_settings_updates() - Update PopulationSim settings for additional geographies
-
prep_control_counts() - Prepare the control counts for use in reporting.
-
prep_control_tables() - Prepare the control (PUMS) tables for use in reporting.
-
prep_hhs_for_income_imputation() - Prepare household-level data for income imputation
-
prep_initial_expansion_data() - Prepare initial expansion summary table for weighting memo
-
prep_mape_totals() - Prepare the MAPE totals for use in reporting.
-
prep_seed_counts() - Prepare the seed counts for use in reporting.
-
prep_seed_tables() - Prepare the seed (survey) data for use in reporting.
-
prep_seed_weights() - Prepare the seed (survey) data + weights for use in reporting.
-
prep_target_adults() - Prepare number of adults target variable for weighting
-
prep_target_age() - Prepare age target variable for weighting
-
prep_target_commutemode() - Prepare commute mode target variable for weighting
-
prep_target_cross() - Prepare cross-tabulated targets for weighting
-
prep_target_edulevel() - Prepare education level target variable for weighting
-
prep_target_employment() - Prepare employment target variable for weighting
-
prep_target_ethnicity() - Prepare ethnicity target variable for weighting
-
prep_target_gender() - Prepare gender target variable for weighting
-
prep_target_h_size() - Prepare household size target variable for weighting
-
prep_target_income() - Prepare income target variable for weighting
-
prep_target_kids() - Prepare number of children target variable for weighting
-
prep_target_race() - Prepare race target variable for weighting
-
prep_target_univstudent() - Prepare university student target variable for weighting
-
prep_target_vehicles() - Prepare household vehicles target variable for weighting
-
prep_target_workers() - Prepare household workers target variable for weighting
-
prep_transit_target() - Prepare transit boardings target by day group
-
prep_weight_summary() - Prepare the weight summary for use in reporting.
-
prep_zone_groups_table() - Prepare the zone group table for the weighting memo
-
prep_zones_sf() - Prepare a simple features object of the zone groups
-
prepare_acs_income() - Prepare ACS income fractions for imputation
-
prepare_targets() - Prepare targets for weighting
-
prepare_trip_adj_model_dt() - Prepare data for trip rate model fitting
-
prepare_zone_groups() - Create zone group crosswalk for weighting
-
print_params() - Print loaded run parameters
-
pums_checksum() - Calculate PUMS checksums
-
read_from_db() - Read data from database as data.table
-
read_pums_codebook() - Read PUMS data dictionary from tidycensus
-
read_schema_properties() - Read the set of properties defined in the JSON schema
-
read_survey_codebook() - Deprecated: Read survey codebook
-
record_checksum() - Record checksums of arbitrary data
-
report_settings_schema_diff() - Console report for settings/schema differences
-
rescale_trip_rate_factors() - Rescale trip rate factors to minimum 1
-
run_tabulate_method() - Tabulate target variable by method
-
sampled_latlon_to_bg() - Convert sampled lat/lon points to block groups
-
save_daypat_results() - Calculate day pattern probabilities
-
set_defaults() - Set default values in settings
-
spectral_zone_groups() - Group PUMAs by sample rate using spectral clustering
-
summarize_data() - Summarize survey data with confidence intervals
-
summarize_person_types() - Summarize person type assignment
-
summarize_pums() - Summarize PUMS data with target updates and confidence intervals
-
summarize_survey() - Summarize survey data with target updates and confidence intervals
-
tabulate_target() - Tabulate frequency counts for variable
-
test_results() - Test project results against database
-
test_teardown() - Teardown test data after tests
-
unlist_levels() - Unlist a list to n-levels deep
-
update_data_root() - Setup weighting data root directory
-
update_daypat_seed() - Update seed and targets for day pattern model
-
update_daypat_targets() - Update day pattern model targets with predicted probabilities
-
update_directories() - Setup project subdirectories
-
update_income_broad_labels() - Update income_broad value labels
-
update_rate_report() - Update rate report with adjusted factors
-
update_settings_pums_vars() - Setup PUMS variable lists
-
update_targets() - Update targets by combining levels
-
weighted.median() - Calculate weighted median
-
weighted.percentile() - Calculate weighted percentile
-
write_to_db() - Write table to DB
-
zone_group_plots() - Plot Zone Groups