Skip to contents

Creates a standardized age target variable for person-level weighting and expansion, using either PUMS or survey input. Use when preparing age targets for synthetic population or survey analysis.

Usage

prep_target_age(h_data, p_data, target_name = "p_age", codebook, settings)

Arguments

h_data

data.table. Household-level input (not used, included for interface consistency).

p_data

data.table. Person-level input. Required columns:

  • For PUMS: must include SERIALNO and age column as specified in settings.

  • For survey: must include age column and codebook mapping. Rows: one per person. Modified by reference: no (returns copy).

target_name

character(1). Name of the target variable to create (default: "p_age").

codebook

data.table. Codebook for variable mapping; must include age value and label columns.

settings

list. Project settings; must include targets[[target_name]] with levels, pums_input, and survey_input.

Value

data.table. Copy of person-level input with new target variable column (target_name).

  • Columns: all original plus target_name (character)

  • Values: standardized age bins

  • Row order preserved

Details

  • Detects input type (PUMS vs. survey) by presence of SERIALNO column.

  • For PUMS:

    • Uses target_list$pums_input to select age column.

  • For survey:

    • Uses codebook to map age values to upper bounds via get_age_upper_bounds(label).

    • Assigns age categories to target variable.

  • Applies cut_and_label to bin numeric age into target levels.

  • Renames output column to target_name (default: p_age).

  • Returns a copy of the input data.table with the new target variable.

  • Error handling: stops if levels do not match expected values.

Settings

  • targets[["p_age"]] (direct): must include levels, pums_input, and survey_input.

Examples

## Not run:
prep_target_age(h_data, p_data, target_name = "p_age", codebook, settings)
#> Error: object 'p_data' not found
## End(Not run)