Skip to contents

Creates a standardized race target variable for person-level weighting and expansion, using either PUMS or survey input. Use when preparing race targets for synthetic population or survey analysis.

Usage

prep_target_race(h_data, p_data, target_name = "p_race", codebook, settings)

Arguments

h_data

data.table. Household-level input (not used, included for interface consistency).

p_data

data.table. Person-level input. Required columns:

  • For PUMS: must include race label column as specified in settings.

  • For survey: must include race column as specified in settings. Rows: one per person. Modified by reference: no (returns copy).

target_name

character(1). Name of the target variable to create (default: "p_race").

codebook

data.table. Codebook for variable mapping; must include race value and label columns.

settings

list. Project settings; must include targets[[target_name]] with levels and survey_input.

Value

data.table. Copy of person-level input with new target variable column (target_name).

  • Columns: all original plus target_name (character)

  • Values: standardized race levels

  • Row order preserved

Details

  • Detects input type (PUMS vs. survey) by presence of SERIALNO column.

  • For PUMS:

    • Uses race label column, converts to lowercase, truncates to 30 chars.

    • Uses regex patterns:

      • str_detect(label, "black") → "afam"

      • str_detect(label, "asian") or str_detect(label, "hawaiian") → "asian_pacific"

      • str_detect(label, "white") → "white"

      • else → "other"

  • For survey:

    • Uses survey input column as specified in settings (no regrouping currently).

  • Checks that observed levels match expected target levels from settings.

  • Renames output column to target_name (default: p_race).

  • Returns a copy of the input data.table with the new target variable.

  • Error handling: stops if levels do not match expected values.

Settings

  • targets[["p_race"]] (direct): must include levels, survey_input.

Examples

## Not run:
prep_target_race(h_data, p_data, target_name = "p_race", codebook, settings)
#> Error: object 'p_data' not found
## End(Not run)